Intramolecular Reductive Cyclization of Unsaturated Keto- or Aldo-esters by Samarium(ii) Di-iodide: A Ready Synthesis of Bicyclic y-Lactones

Shin-ichi Fukuzawa,* Masahiro lida, Akira Nakanishi, Tatsuo Fujinami, and Shizuyoshi Sakai

Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, Hamamatsu 432, Japan

Treatment of unsaturated keto- or aldo-esters with Sm12 in tetrahydrofuran (THF) or THF-hexamethylphosphoramide affords bicyclic y-lactones in moderate to good yields.

Numerous efforts have been made to prepare bicyclic γ -lactones, not only because their abundant occurrence in Nature, but also because of their usefulness as versatile synthons. As a result, various methods have been developed, *e.g.,* electrophilic ring-opening of a cyclopropanecarboxylic acid ester **,1** or spiro-oxirane;2 the free-radical cyclization of a bromoacetal;3 the intramolecular lactonization of an unsaturated ester by PhSeC1;4 and the oxidative cyclization of an alkene containing a tertiary hydroxy-group by chromium(v) *.5*

We have recently reported the intermolecular reductive coupling of α , β -unsaturated esters and carbonyl compounds by samarium(II) di-iodide (SmI₂), to give γ -lactones.⁶ We thought that if this procedure could be extended to an intramolecular reaction, bicyclic y-lactones would be produced in one step; and indeed, they may be obtained from unsaturated keto- and aldo-esters in moderate to good yields under mild conditions.

Several trans-unsaturated keto- or aldo-esters were prepared by standard procedures.7 Treatment of these substrates with $SmI₂$ in tetrahydrofuran (THF) or THF-hexamethylphosphoramide (HMPA) (10: 1) afforded moderate to good yields of bicyclic γ -lactones. \dagger

Reaction of *trans*-ethyl 8-oxonon-2-enoate $(1; R = Me; n =$ 2) with SmI₂ was examined under a variety of conditions (changing solvent, temperature, time, amount of $SmI₂$, and addition of Fe^{III} catalyst). Results are shown in Table 1 (entries 2-6). Reaction proceeded either at room temperature or at reflux; reflux conditions usually gave higher yields. HMPA was not essential as co-solvent, but its addition tended to improved the product yields. Addition of a trace of $FeCl₃$ is effective for the Barbier-type reaction involving the use of $SmI₂,⁸$ but the yield was not improved in this case. The use of an excess of SmI₂ gave more satisfactory results.

Table **1.** Intramolecular reductive cyclization of unsaturated keto- or aldo-esters by $SmI₂$.^a

			Isolated Isomer ratiob	
Entry n		R Reaction conditions	yield $(\%)$	trans: cis
		1 Me $2SmI_2$, THF, reflux, 4 h	92	90:10
2		2 Me $2SmI2$, THF, reflux, 4 h	56	64:36
3		2 Me $2SmI_2$, THF-HMPA, $25^{\circ}C$, 5h	36(42)	70:30
4		2 Me 2SmI ₂ , THF-HMPA, reflux, 1 h	47(54)c	79:21
5		2 Me 2SmI ₂ , THF-HMPA, reflux,	38(43)c	66:34
		1 h, FeCl ₃ (1%)		
6		2 Me $4SmI_2$, THF-HMPA, reflux, 1 h	66(75)c	70:30
7		3 Me $4SmI_2$, THF, reflux, 1 h	45	80:20
8	3	Me 2SmI ₂ , THF-HMPA, reflux, 1 h	40	75:25
9	8	Me 4SmI ₂ , THF-HMPA, reflux, 1 h	40 ^d	
10		H 4SmI ₂ , THF-HMPA, reflux, 1 h	43	__e
11	2	H $4SmI_2$, THF-HMPA, 25 °C, 5 h	30	75:25
12		H 4SmI ₂ , THF-HMPA, reflux, 1 h	34	70:30

^a(1) (1 mmol), ButOH (1 mmol), THF (10 ml) or THF-HMPA (10 ml-1 ml). b Determined by 1H n.m.r. and g.1.c. *c* G.1.c. yield. **14-Hydroxypentadec-2-enoate** was produced. *e* Not determined.

f A typical experimental procedure is as follows. To a refluxing blue-green solution of SmI_2 (0.4 M; 10 ml) in THF-HMPA (9-1 ml) was added a THF (1 ml) solution of 8-oxonon-2-enoate $(1; R = Me, n)$ $= 2$, 198 mg, 1 mmol) and t-butyl alcohol (1 mmol) with stirring. The refluxing was continued for 1 h, during which period the solution turned yellow-green. After the usual work-up, the bicyclic y-lactone $(2; R = Me, n = 2, 104 mg, 0.66 mmol)$ was obtained in 66% yield by flash column chromatography on silica gel (hexane-ethyl acetate, $10:1$, as eluant). The isomer ratio was determined by $1H \, \text{n.m.r.}$ ⁹ and g.1.c. The product gave satisfactory analytical results, and the i.r. spectrum $(v_{CO} 1765 cm^{-1})$ and mass spectrum $(M+ 154)$ were in accord with the structure assigned.

The bicyclic y-lactone $(2; R = Me, n = 2)$ was obtained as a mixture of *trans-* and cis-isomers in a *trans* to *cis* ratio of 70 : 30. The ratio was determined by the relative intensity of methyl proton absorption and g.l.c.9 It was almost independent of the reaction conditions; thus we infer that the bicyclic y-lactone was the kinetic product of the reaction.

The analogous reaction occurred with ethyl 7-0x0-oct-2 enoate $(1; R = Me, n = 1)$, ethyl 9-oxodec-2-enoate $(1; R =$ Me, $n = 3$, ethyl 7-oxohept-2-enoate $(1; R = H, n = 1)$, and ethyl 8-0x0-oct-2-enoate $(1; R = H, n = 2)$ to produce the corresponding bicyclic y-lactones as mixtures of *trans-* and cis -isomers in good yields (Table 1, entries 1, 7-8, 10-12).¹⁰

However, the longer-chain unsaturated keto-esters such as ethyl 14-oxopentadec-2-enoate $(1; R = Me, n = 8)$ did not yield **(2);** simple carbonyl reduction occurred instead (entry **9).**

Received, 23rd February 1987; Corn 241

References

- 1 **S.** P. Brown and B. **S.** Bal, Tetrahedron Lett., **1981, 22, 4891.**
- **2 L.** Sterkowski and M. **A.** Batliste, Tetrahedron Lett., **1981, 22, 279.**
- **3** G. Stork, **R.** Mook, Jr., **S. A.** Biller, and **S.** D. Rychrovsky, J. Am. Chem. **SOC., 1983, 105, 3741.**
- **4 K.** C. Nicolaou, **S.** P. Seitz, W. J. Sipio, and J. F. Blount, *J.* Am. Chem. **SOC., 1979, 101, 3884.**
- **5** T. **K.** Chakraborty and **S.** C. Sekaran, Tetrahedron Lett., **1984,27, 2895.**
- **6 S.** Fukuzawa, **A.** Nakanishi, T. Fujinami, and **S.** Sakai, J. Chem. *SOC.,* Chem. Commun., **1986,624.** See also preceding communication.
- **7** trans-Unsaturated keto-esters were prepared by a chemoselective Wittig reaction of the corresponding keto-aldehydes with ethyl **(triphenylphosphorany1idene)acetate.** trans-Unsaturated aldoesters were prepared from δ -valero- and ϵ -capro-lactone according to the literature methods. (a) J. **M.** Takacs, M. **A.** Helle, and F. L. Seely, Tetrahedron Lett., **1986, 27, 1257;** (b) **R. D.** Little and G. W. Mueller, *J.* Am. Chem. **SOC., 1981, 103, 2744.**
- **8 P.** Girard, J. **L.** Namy, and H. B. Kagan, J. Am. Chem. *SOC.,* **1980, 102,2693.**
- **9** (a) J. Ficini and **A.** Manjean, Bull. **SOC.** Chim. Fr., **1971,219;** (b) T. K. D. Gupta, D. Felix, U. M. Kempe, and **A.** Eschenmoser, Helv. Chim. Acta, 1972, 55, 2198. trans-CH₃ appears at higher field, **6 1.32,** than cis-CH,, 6 **1.44.**
- 10 P. Buldt, W. Thieleche, and J. Etzenmueler, Chem. Ber., **1969, 102, 4157.**